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Abstract—Motivated by the recent interest in the moderniza-
tion of the traditional manufacturing facilities, this work focuses
on the development of an automated warehouse where mobile
manipulators autonomously navigate in the environment by
exploiting additional spatial information gathered by a network
of fixed RGB-D sensors. In detail, a navigation approach is
proposed wherein both the mobile and fixed nodes composing
the system are low-cost devices characterized by limited sensing
and computing capabilities. A ROS2-based proof of concept of
the outlined scenario is discussed and investigated with special
regard to the practical challenges and the possible limitations.
The results of some preliminary tests are reported to provide
an intuition on the feasibility and potentiality of the designed
approach in real-world industrial scenarios.

Index Terms—navigation, sensor network, mobile robot

I. INTRODUCTION

Taking advantage of the IoT paradigm, the innovation spirit
permeating the modern manufacturing plants encourages the
exploitation of cooperating cyber-physical systems. These are
composed of physically and/or virtually interacting hetero-
geneous devices aiming at optimizing the whole production
process [1]. In detail, one of the nine pillars of the Industry
4.0 envisages the use of autonomous robots as a pervasive
and ubiquitous technology in the emerging smart factories.
Unmanned ground and/or aerial vehicles, thus, turn out to be
a powerful resource to accomplish monitoring, inspection, and
transporting tasks, acting either as autonomous individual units
or cooperative multi-agent groups (see, e.g., [2]–[4]).

In this increasingly automated context, safe and efficient
robot navigation becomes a mandatory problem to face. To
guarantee high-performance path planning and successful ob-
stacle detection and avoidance, two possible strategies are
generally adopted: to equip the autonomous robots with high-
level computational capabilities and sensing devices or to
exploit external auxiliary sensing and computing systems.

An example of the former strategy is the BigDog, a rough-
terrain quadruped robot whose navigation system uses a com-
bination of planar laser scans, stereo vision, and proprioceptive
sensing [5]. Similarly, in [6], the indoor localization and
navigation of a ground robot is achieved through the use of
an onboard Lidar and RGB-D camera. A low-cost autonomous
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mobile robot system, relying only on a RGB-D camera and a
low-end SBC, is proposed in [7]. In particular, a large class
of navigation techniques restoring on information-rich sensor
systems (e.g., cameras, laser range finders, ultrasound sensors)
exploits additional visual markers, as graphical landmarks [8],
QR codes [9] or light patterns [10].

A robot navigation strategy based on an auxiliary sensing
system is, instead, presented in [11], involving a range sensor
network required to cope both with the obstacle detection and
trajectory planning for a low-level path tracker robot. Along
the same line, different approaches for indoor navigation
are described in [12], which rely on the exploitation of a
wireless sensor network, avoiding the use of additional sensors
onboard. More recently, a novel indoor navigation solution has
been presented in [13] based on multiple WiFi signals.

When dealing with high-performing robots in terms of both
sensing and computing capabilities, their navigation is facili-
tated by the rapid and efficient processing of the recorded envi-
ronmental data. Contrarily, besides potentially communication
issues, the approach based on any auxiliary system entails
gathering more spatial information, and, thus optimizing the
robot path planning also limiting the computational burden.

In light of these facts, this work focuses on the navigation of
mobile manipulators within an industrial warehouse equipped
with an RGB-D sensor network. As compared to the existing
literature, the outlined approach envisages a multi-element sce-
nario wherein both the mobile robot and the auxiliary network
are characterized by the same limited sensing capability and
comparable modest computational performance. The proposed
solution, thus, involves the exploitation of interacting low-cost
devices. In this work, we outline an effective proof of concept
of the mentioned navigation approach, especially devising a
suitable ROS2 architecture to handle the sharing of spatial
information gathered by the different devices.

The rest of the paper is organized as follows. The consid-
ered industrial application scenario is detailed in Section II.
Section III provides an insight into the outlined multi-node
network. In Section IV the attention is focused on the designed
proof of concept and some preliminary results are reported. In
Section V the principal challenging aspects and open design
choices affecting the proposed approach are discussed. Finally,
some concluding remarks are given in Section VI.
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Fig. 1: Schematic representation of the elements (MoMa - Mobile Manipulator, WS - Working Station, RGB-D sensors)
involved in the proposed proof of concept, together with the information they are required to exchange (arrows) and the tasks

they are charged to accomplish (colored blocks).

II. APPLICATION SCENARIO

In a broad sense, this work focuses on the development
of an effective strategy to automatize the management of a
manufacturing warehouse within the smart factories context.
In this direction, a cutting-edge trend consists in completely
demanding the items transportation and pick-and-place opera-
tions to a single or a group of autonomous mobile manipulators
(MoMas). These are generally constituted of a mobile basis
and a manipulator having arbitrary degrees of freedom (dofs),
and endowed with a sensing system and a computational unit.

Despite their peculiar features which can lead to different
algorithms implementation, the aforementioned MoMas are
required to navigate in a structured and potentially cluttered
environment. In this challenging scenario, facing any robot
navigation issue implies coping with
a. the environment monitoring, to extract significant spatial

information, as, for instance, changes in the warehouse
fixed structures configuration;

b. the obstacle detection, interpreted as the identification of
dynamic intruders and/or temporary environment modifi-
cations (e.g., set down packages);

c. the map definition, namely the determination of the (time-
varying) occupancy grid of the environment conditional
on the scene monitoring and obstacles identification;

d. the robot localization, i.e., the estimation of the MoMa
position with respect to a global fixed frame;

e. the path planning, consisting in the computation of the
optimal MoMa pathway from a given starting point to
a target location according to the current warehouse
structure and the presence of obstacles, accounting also
for the robot kinematic and dynamic constraints;

f . the trajectory tracking, understood as the minimization of
the error between the real MoMa position and the desired
one output from the path planning at each time instant.

Given these premises, in the rest of the work, we focus the
attention on a single MoMa1 (hereafter, referred also as mobile
node). The idea is to fulfill all the mentioned tasks mainly
resting on the suitable information sharing among the MoMa
itself and a network of RGB-D sensors (hereafter, referred
also as fixed nodes) ad-hoc spread in the environment. In

1Note that the extension to multiple MoMas acting as a single agent can be
performed, for instance, by considering the other robots as dynamic obstacles.

detail, in our experimental setup, the sharing process of the
valuable information is assumed to be managed by a working
station (WS) that is also required to solve the robot localization
and path planning task, thus acting as central node. The
obstacle detection is, instead, autonomously accomplished by
the MoMa, while the map is updated according to the data
gathered by the fixed nodes. Figure 1 aims at clarifying
the tasks partition among the system components and the
information shared between the nodes.

III. MULTI-NODE SYSTEM DESCRIPTION

In this section, we provide a complete description of the
multi-node system at the core of the proposed proof of
concept. In doing this, the attention is focused on highlighting
both the high-level properties and the specific technical char-
acteristics of the facilities employed in the preliminary tests.

A. Mobile Manipulator
As already mentioned in Section II, the considered MoMa

is an autonomous vehicle composed of four main parts:
• the actuation unit, i.e., an unmanned mobile basis;
• the manipulation unit, corresponding to an articulated

robotic arm acting as the kinematic chain for the end-
effector;

• the sensing system, usually involving heterogeneous and
complementary sensors;

• the computational unit, namely a computer devoted to the
robot control and decision-making process.

The MoMa adopted in our experimental setup is the Lo-
CoBot (Low-Cost roBot) depicted in Figure 2. This includes
a Kobuki base YMR-K101-W1 as actuation unit and a 5 dofs
Interobotix WidowX 200 as manipulation unit. The computa-
tion unit consists in a mini PC Intel NUC7i5BNH mounting
an Intel Core i5-7260U 2.2GHz (4M cache) processor, 8Gb
DDR4 RAM, and a Wireless-AC 8265 antenna. Finally, the
sensing system comprehends a 3-axes gyroscope and some
edge detection and bumper sensors, in addition to an Intel
RealSense Depth D435 camera including an IR projector and
an RGB color sensor. Based on the released data-sheet [14],
[15], the used MoMa is also characterized by the features
reported in Table I as regards the actuation unit and sensing
system. Observe that LoCoBot performance is limited by the
low-cost budget: this motivates its adoption in the considered
experimental setup.



Fig. 2: LoCoBot
(MoMa - mobile node)

Fig. 3: RPi 4B + Intel D435 camera
(RGB-D sensor - fixed node)

Fig. 4: RGB-D sensor network
in the experimental setup

actuation unit max linear speed 70 cm/s
max angular speed 180 ◦/s

sensing system

gyro meas. range ±250,±500,±2000 dps
gyro sensibility 8.75, 17.50, 70mdps/dig
min depth dist. at max res. 28 cm
depth accuracy < 2% at 2m
depth FOV 87 ◦ × 58 ◦

depth output resolution up to 1280× 720
depth frame rate up to 90 fps
RGB frame resolution 1920× 1080
RGB frame rate 30 fps
RGB sensor FOV 6◦ × 42◦

RGB sensor resolution 2MP

TABLE I: LoCoBot actuation unit and sensing system
features

B. RGB-D sensors

The fixed nodes of the considered system consist in RGB-D
sensors, i.e., compact devices composed of two parts:

• a computational unit, namely a microprocessor;
• a sensing unit, subsisting in an RGB camera and an

infrared module to recover depth information.
As shown in Figure 3, the computational unit of the RGB-D

sensors used in our experimental benchmark consists in a
Raspberry Pi 4B held in an aluminum case provided with
heat dissipation fans; while the sensing unit is made by an
Intel RealSense Depth D435 camera. Note that the employed
camera is the same mounted on the LoCoBot to guarantee
coherence in terms of system nodes sensing performance
and reduce the computational effort of the system. Moreover,
the camera is highly configurable providing a large set of
resolutions and framerates (II) being versatile for industrial
purposes. On the other hand, the choice of using Raspberry
Pi 4 is motivated by the fact that this device stands out for
its small size (56× 85× 15mm) and low-power consumption
(3.8− 4.0W), despite its affordable price (≤ 100$) [16].

Figure 4 illustrates the entire experimental setup; the RGB-
D sensors are located on the top of aluminum bars at a height
of 2m and the whole fixed nodes network is made up of five
devices placed as in Figure 5 where it is represented (in black)
also the perimeter of the used extruded polystyrene structure
covering a 3.75m × 7.5m area. These designed choices
ensure that the region covered by each camera is approximate
2.5m × 1.5m (light blue rectangles in Figure 5), hence the
entire monitored area measures approximately 10mq.
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Fig. 5: Experimental setup configuration
(each black triangle represents a RGB-D sensor)

C. Working Station

In the considered multi-node system, a WS acts as a central
unit managing the data recorded by both the mobile and the
fixed nodes (incoming arrows in Figure 1) and providing to the
MoMa the information about both its position and the trajec-
tory to follow (outgoing arrow in Figure 1). We emphasize that
the aforementioned data streams can generally differ in terms
of frequency: the RGB-D sensors can send information at
longer time intervals with respect to the MoMa mainly because
the data acquired by the mobile node are necessary to its
localization in the environment and can be partially computed
on-board to reduce the network workload. In addition, the
MoMa is also tasked to detect and avoid dynamic obstacles,
thus collecting real-time environment information.

In our experimental setup, the WS is an industrial PC
equipped with an Intel Core i5-4210M CPU 2.60GHz (4M
cache) processor, 16Gb DDR4 RAM, and Gigabit Ethernet
interface. The choice of developing a centralized architecture
resting on a WS as central node is motivated by the intent
of proposing a low-cost strategy for manufacturing warehouse
management which turns out to be also easy to implement in
existing facilities using standard industrial infrastructures and
protocols. We finally underline that, in our benchmark, all the
fixed nodes are connected to the WS by using cabled Ethernet
communication links, while the MoMa uses a WiFi connec-
tion. This solution aims at minimizing possible problems due
to network congestion towards the central node by adopting a
dedicated local network composed of an 8 port switch and a
WiFi hotspot.



IV. NAVIGATION APPROACH

This section aim at clarifying both the logical and practical
aspects of the proposed proof of concept. In doing this, we
report also the results of some preliminary experimental tests.

A. General Overview
The proposed proof of concept rests on the use of ROS2

as middleware to manage both the single system component
actions and the interplay among the different nodes. While
ROS1 enables a standardized framework for robots, the new
version focuses on contemporary state-of-the-art technologies
in robotics like distributed processing, real-time control, multi-
device applications, poor-quality communication, embedded
computing, system scalability, and production deployment.
ROS2 represents a challenging design choice since the tran-
sition is still in progress: a limited number of packages is
available and the documentation is usually poor. Some parts
of the software API is still at an early stage and changes
between one version and another lead to broken pipelines
and minor issues requiring original contributions and time-
consuming debugging sessions. However, we decide to use
ROS2 to cope with the long term objectives of the project that
are not restricted to the design used for this proof of concept.

The main modules composing the designed ROS2 architec-
ture are described in the following.

• RGB-D camera driver. The driver provides the interface
to the data collected by the RGB-D sensors. Resolution
and framerate can be set independently for each camera
and also for both the RGB and the Depth components.
The ranges for the adopted Intel Realsense D435 cameras
are listed in Table II. Intrinsic and extrinsic matrices can
be obtained from this package.

• Robot description. The module characterizes the robotic
platform in terms of physics, volumes, links, and joints.
The space occupied by the robot can change depending on
the actuators. The package guarantees a consistent trans-
formation between the different points of interest in the
robot, like sensor sources of data, hand-eye calibration,
and end-effector pose.

• Base controller. The package manages the mobile base
motion using as input the robot linear and angular ve-
locities. It translates coherently these velocities referred
to the robot as a whole to the speed information related
to left and right wheels. The package computes also the
odometry of the robot by using the integrated IMU.

• Arm and camera controller. This controller is in charge
of monitoring and moving arm joints and camera pan and
tilt. The information about the current state is periodically
spread to the Robot Description module to update the
position accordingly. In this work, the role of this part
is limited to keeping the arm in a resting position where
the interference with the environment is minimal. The
camera pan and tilt are fixed too, with the sensor looking
right in front of the robot, parallel to the ground floor.

• Laser scan detection. The module converts the depth
images produced by the RGB-D sensors to a coherent

format resolution frame rate (fps)

depth Z [16bit]

1280 × 720 6, 15, 30
848 × 480 6, 15, 30, 60, 90
640 × 480 6, 15, 30, 60, 90
640 × 360 6, 15, 30, 60, 90
480 × 270 6, 15, 30, 60, 90
424 × 240 6, 15, 30, 60, 90

RGB YUY [16bit]

1920 × 1080 6, 15, 30
1280 × 720 6, 15, 30
960 × 540 6, 15, 30, 60
848 × 480 6, 15, 30, 60
640 × 480 6, 15, 30, 60
640 × 360 6, 15, 30, 60
424 × 240 6, 15, 30, 60
320 × 240 6, 30, 60
320 × 180 6, 30, 60

TABLE II: Intel Realsense D435 camera specifications

2D laser scan referred to the origin of the map, with a
height of 0.5 m. The information coming from the robot is
used to generate a local map for localization and obstacle
avoidance purposes.

• Localization. The package manages the robot localization
inside the map generated using the fixed node laser scans
as a quasi-static map. The local scan and the odometry
of the robot are then coupled together to estimate the
robot pose through an Adaptive Monte-Carlo Localizer
technique based on a particle filter.

• Navigation. The module is composed of three parts: the
planner, the controller, and the recovery. The planner aims
at computing the shortest path from the current position to
a goal based on the occupancy of the map. The controller
follows the path generated by the planner by using the
local map to avoid previously un-detected obstacles. The
recovery covers failures or non-managed situations.

• Visualization and monitoring. The package consists of a
set of visual tools and monitoring procedures allowing us
to set parameters, test system subparts, and easily identify
issues when necessary.

B. Preliminary Tests

To provide a first intuition on the feasibility and validity
of the proposed navigation approach, in the following we
present the results of some preliminary tests conducted in the
experimental scenario depicted in Figure 4. We remark that
the intent is not to explore the outlined solution performance,
rather to verify its actual practicability in a real-world scenario.

Figure 6 reports the RGB (upper row) and the Depth (lower
row) images acquired by the cameras constituting the fixed
node network displaced as in Figure 5. For these devices, the
framerate is fixed to 15 fps, while the resolution is set to 424 ×
240 for both the RGB and Depth parts. Regarding the MoMa,
the resolution and the framerate of the camera mounted on the
LoCoBot are both settled to 848 × 480 at 30 fps. We underline
that the mobile platform camera is characterized by higher
resolution and framerate to better cope with local changes in
the scene, whereas all the fixed sensors work are featured by
the same images size and rate to ease the data merging process.
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Fig. 6: RGB and Depth images acquired by the cameras composing the fixed node network depicted in Figure 5.
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Fig. 7: Results of a preliminary test of LoCoBot navigation conducted in the experimental setup depicted in Figure 4

Figure 7 shows different phases of the MoMa navigation:
highlighted colored areas identify the perimeter detected by the
mobile robot camera. Note that the covered region measures
approximately 1.5m × 1.5m. The initial and target position
of the LoCoBot is displayed in Figure 7(a) in black and blue,
respectively, while Figure 7(b) reports the initial instants of
the MoMa navigation and the path planned by the WS (blue
line). In Figure 7(c), one can observe the presence of an
obstacle on the map (a temporarily set down package). This is
detected by the robot and its path is accordingly revised. We
highlight that the new planned trajectory is characterized by a
smooth profile and reveals a conservative behavior as regards
the possible maneuvers. In particular, the MoMa plans to
overcome the obstacle, while keeping a safe distance from the
other (known) elements in the map. In Figure 7(d) the attention
is focused on the obstacle avoidance maneuver. We report
most critical situation wherein the robot passes by a narrow
passages. Finally, Figure 7(e) depicts the task conclusion when
the LoCoBot approaches the target location.

V. DISCUSSION

Although the preliminary experimental tests provide encour-
aging results, the challenging aspects and open design choices
affecting the proposed proof of concept are numerous. We aim
at discussing some of them in the following.

a) Adopted approach: in the outlined multi-node system,
the navigation goal can be faced either in a centralized or a
distributed manner. Here, we propose a solution based on a

centralized approach, mainly resting on a WS able to handle
the most of the tasks itemized in Section II. The advantages
derived by this design choice consist in the simple and effort-
limited realization of the entire multi-element architecture and
also in the high and complete control of all the involved
devices. On the other hand, the adoption of a distributed
paradigm grants higher network scalability and also robustness
in terms of both communication and node failure, at the
price of more complicated management of the data. In the
distributed scenario, indeed, each RGB-D sensor can possibly
share the retrieved information only with a restricted group
of nodes in the network and not necessarily submit to a tight
periodic schedule. From a practical point of view, coping with
the MoMa navigation in a distributed framework implies the
online path computation from the LoCoBot itself, and such a
path can be determined only in a suboptimal manner since the
robot can have only partial information about the environment.
This issue can make also the MoMa localization more prone
to errors, thus affecting the trajectory tracking accuracy.

b) Communication infrastructure: in our benchmark, the
communication between the WS and the RGB-D sensor occurs
over Ethernet. This choice is mainly motivated by two factors.
The former is the continuous streaming of images going from
the fixed nodes to the central one. The Raspberry Pi 4B WiFi
module is not very efficient, so selected a cabled connection to
grant both speed and reliability. As for the latter, the adopted
infrastructure guarantees that the robot is the only device using
the WiFi network, therefore preventing possible congestion



in the hotspot. This is crucial to avoid undesired latency in
the system. Indeed, adopting a wireless-only approach would
reduce the network infrastructure, but the size and frequency
of the information interchange should be reduced accordingly.
Distributing the computational burden from the WS to the
fixed nodes would reduce the network workload and provide
alternatives to the current solution.

c) Environmental data: the main source of data repre-
senting the environment consists of the RGB-D images.This
is basically raw information as collected from the cameras.
We underline that different alternatives can be considered,
especially with the purpose of balancing the computational
effort with the payload in the packages traversing the network
to avoid congestion. One solution relies on computing the
2D laser scan directly inside the acquisition node. Another
possibility that could work particularly well on fixed nodes
focuses on sending differential information including only the
parts that are significantly changed with respect to the last
update. On the other hand, the 2D map significantly reduces
the information available to the MoMa in case of manipulative
tasks or complex obstacles. Computing a 3D point cloud can
compensate, possibly by integrating into the mobile platform
an external Vision Processing Unit (VPU) to manage the
additional workload. Balancing image resolution and framerate
is fundamental to gathering effective environmental data since
they affect all the techniques previously described.

d) Map update: a substantial but released design choice
rests on the management of the map update by mean of the
fixed nodes. In Section IV, we state that the environment data
are periodically gathered from the RGB-D sensors, depending
also on the framerate imposed on the cameras. However, map
updates can be subject to an obstacle detection or a significant
environment change. In this scenario, to suitable handle the
RGB-D sensors information it is worth developing an ad-
hoc event-based decision-making strategy, which may require
increased computational capabilities from the fixed nodes.

e) Robot localization: assuming to deal with WiFi-
only communication among the system nodes, the MoMa
localization in the environment can be accomplished also
performing trilateration based on the received signals power.
This localization technique can be exploited in conjunction
with the standard visual based ego-pose estimation.

f) Path planning: the path definition can be subject also
to further either robot constraints or dynamic environment
configuration. For instance, it is suitable to determine the robot
desired trajectory by taking into account the shape and volume
of the transported item (if any). Along the same line, the path
planner can exclude all the regions of the environment that are
temporarily unavailable, e.g, the areas occupied by loading and
unloading. We observe that the information needed in both the
reported examples can be provided by the fixed nodes, which
are thus required to fulfill also a surveillance task. More in
general, we emphasize that the proposed multi-node system
is a flexible framework whose components can accomplish
auxiliary and/or other tasks.

VI. CONCLUDING REMARKS

In this work, we present a proof of concept for robot
navigation in an industrial scenario, exploiting an auxiliary
RGB-D sensor network. Main contribution regards the use
of low-cost devices interacting among them in a multi-node
framework based on a ROS2 architecture. The results of the
preliminary tests are encouraging, highlighting the suitability
of the designed setup, composed by a LoCoBot as mobile
node and a network of RGB-D cameras, paired with Raspberry
Pi 4B for the computational unit, as fixed nodes. A working
station is adopted as a central unit for a major control of the
overall system, however also a distributed paradigm can be
quite effortless configured with this design for scalability and
robustness purposes. This and other open design choices are
discussed in the work, taking into account the challenging as-
pects for industrial applications, as the communication mean.

We are aware that this work constitutes only a starting
point for the development of effective strategies for robot
navigation. Particular attention is devoted to the design of a
flexible solution, the possibility to extend the network with
other MoMas simultaneously acting in the same workspace,
and also expandable with an increased number of fixed nodes.
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