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Abstract

Robotic industry needs new, innovative, ideas to be globally competitive.
Conventional industrial robots are not able to adapt to changes in the as-
sembly processes. Flexible assembly applications are actually uncommon
and only isolated attempts exploit industrial robots to perform tasks with
variability in the parts. Variability aspects are emphasized when developing
novel manufacturing applications involving human robot collaboration which
are the foundation of Industry 4.0 systems. In this chapter, we will describe
how variability can be considered and mathematically described as part of
the problem to obtain a flexible robotic solution. The selected approach is
based on a probabilistic representation of the task obtained starting from
a set of demonstrations collected from humans. The chapter will illustrate
the different steps leading to the complete learning framework. We will start
by describing the strategies adopted during the data collection phase. From
the raw data, the design of feature extraction procedures will be provided
alongside with a set of preprocessing techniques used to remove noisy and
incoherent information. The resulting dataset will be used to train a model
of task by following a probabilistic approach. The output of the model will
be exploited to actuate an industrial manipulator in the context of signifi-
cant production scenarios. The robot motion strategies will be also analyzed
depending on the level of flexibility requested from the specific use case.
Two main use cases will be introduced: (i) the automatic assembly of a car
door with its module, and (ii) robotize the manufacturing process of elec-
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tric machines, in particular winding of coils on stator or rotor cores. Each
problem will be mathematically formulated by modeling both the robotic
platform and the target to achieve. The influence of the scenario variability
with respect to the computed robotic motion will be considered. The system
flexibility will be evaluated by means of an extensive set of benchmarking
tests by recording data and actuating robots in both simulated and real en-
vironments. Achievements will be compared with respect to state of the art
solutions by defining a set of objectives and metrics. The goal is to measure
the performance of the system, for example in minimizing time and energy
needed to move the robot in the working space, in generating an effective
human-robot interaction with low reaction time and high accuracy, and in
providing an intuitive robot learning technique to easily let the human teach
the robot new tasks. Dynamic online reconfigurability of the framework will
be considered by testing its capability to deal with novel situations and new
products. The integration of the proposed technologies with current robotic
systems will be discussed and a solution based on the Robot Operating Sys-
tem (ROS) will be proposed to provide a good infrastructure for network
communication as well as all the tools necessary to a modern distributed and
heterogeneous system. The feasibility and cost effectiveness of the developed
solutions will be taken into account in order to demonstrate the applicability
of the proposed approach in actual industrial settings.

Keywords: Robotics, Robot Programming by Demonstration, Kinesthetic
Teaching, Robot Learning, Industry 4.0, Automatic Assembly, Electric
Motors

1. Introduction

During the last years, the dissemination of robots has exploded in many
aspects of everyone lives. Up to now, we can meet robotic devices not only in
the most advanced factories, but also in our houses. Nowadays, it is common
to find a robot autonomously cleaning up a house, or assisting a surgeon
during a medical operation. A key factor for the Industry 4.0 upgrade is the
use of robots [1]. Nowadays, manipulators are employed for supply chains
in which the same task should be accomplished several times in a repetitive
manner. The main reasons are the price decrease and the boosted invest-
ments to develop technology in the field of robotics. All these new tech-
nologies have the goal of improving humans’ quality of life, for example by
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reducing their workload, or by substituting the operator in dangerous and
strenuous tasks. In the majority of the cases, human operators can under-
stand easily how to perform the task even in complex situations, but they
have not the expertise to program the robot. A useful solution could be
obtained if the operator would be able to teach the robot how to perform
a certain task, guiding the robot or showing himself what to do by using a
Robot Learning by Demonstration paradigm [2]. Also known as Robot Pro-
gramming by Demonstration, this paradigm aims to train robotic devices
through human demonstrations in order to teach them how to perform a
task [3] and many examples in the literature show the useful aspects of ap-
plying robot learning by demonstration techniques to provide an easy way
to program robots [4].

Up to now, several research groups have developed different paradigms
and techniques, but only a limited number of attempts have been exploited in
real industrial environments. Myers et al. [5] wanted to automatically insert
a PC card into a backplane slot on the motherboard treating forces/moments
as the sensed inputs and robot velocities as the control outputs. Baroglio
et al. [6] believe that the robots ability to gain profit from its experiences is
crucial for fully exploiting its potential. They analyzed several approaches
and tested them in a classical industry-like problem: insert a peg into a
hole. The task was performed while recovering from error situations, in
which, for instance, the peg is stuck midway because of a wrong inclination.
Neto et al.[7] presented a way to program a robot showing it what to do by
using gestures and speech. The gestures are extracted from a motion sensor,
namely a Wii remote controller. The Japanese company Fanuc is developing
robots that use reinforcement learning to train themselves [8]. Fanucs robot
learns how to pick up objects while capturing video footage of the process.
The new knowledge is used to refine a deep learning model that controls
robot actions. It has been proved that after about eight hours the robot
reaches up to 90 percent accuracy or above, almost the same as if it was
programmed by an expert.

Usually, robots need a large number of demonstrations to learn how to
perform a simple task. Selecting a specific Machine Learning algorithm could
help to reduce the number of demonstrations in certain contexts, but other-
wise improvements are limited. On the other hand, overcomplicated Machine
Learning algorithms could end in overfitting. Consequently, the model could
fail in predicting reliably future observations. The same problem may occur
when data are limited and the model focuses on specific situations without
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the possibility to fit additional data. With overfitting, the framework lacks of
abstraction and generalization capability and it will not be able to face even
limited variations. Generalization is a key concept if the goal is to obtain a
relation between robot movements and the objects to be manipulated during
the task. Nevertheless, very simple algorithms coupled with an excessively
wide dataset could lead to underfitting. The resulting model will not cap-
ture the common characteristics among the data providing poor predictive
performance. A good way to incorporate variability is to consider actions per-
formed by many different subjects [9].The same gesture can slightly change
depending on who is doing the movement. The gesture remains correct, but
the ways to perform it are almost infinite. However, the risk of underfitting is
forestalled since there are common characteristics among the numerous ways
different subjects perform the same movement.

In kinesthetic demonstration [10], the robot is physically guided through
the task by the humans. An alternative approach could be learning from
visual information [11]. In fact, the constraints characterizing the movement
should be extracted from a sequence of images. Furthermore, industrial
applications requires particular conditions on safety and efficiency. These
aspects have to be taken into account when building the model to control
a robotic device. The advent of Industry 4.0 brought new and innovative
challenges [12] for robotics. The new concept of industry aims at reducing
the waste, while maximizing the customization of the product, therefore a
flexible and dynamic production line is essential. An efficient way to produce
is necessary in modern factories, and the manufacturing system should be
able to switch production in a very short time. The presence of intelligent
and collaborative robots is a key factor for the fulfillment of these targets.
Old-fashion robots are expensive devices, closed in a cage, repeating con-
tinuously the same task. Reprogram one of these robots takes time, money
and requires the intervention of specialized programmers. New robots are
lightweight and no longer closed in cages, since they are equipped with force
sensors, aware of possible contacts with the surrounding world. The charac-
teristics of collaborative robots (Cobots) make them ideal to be Programmed
by Demonstration. This programming paradigm reduces the time needed to
program the robot, since there is no requirement of specialized personnel.
On the contrary, the machine will learn the task by observing the demon-
strations performed by skilled workers which know well the tasks the robot
should do. Furthermore, Cobots offer the possibility of having humans and
machines working on the same workplace, an also to operate together to fulfill
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the same task. The closeness of the machine to humans arises several safety
problems. The main issue is to avoid accidental contacts among humans and
robots. Giving robot the capabilities perceive, understand and react to what
happens in the environment will become essential in the factories of the fu-
ture. In other words, the robot should be intelligent, capable of interpreting
feedback from outside, and it will need the ability to understand and predict
human movements.

In this chapter, we will describe how variability can be considered and
mathematically described as part of the problem to obtain a flexible robotic
solution by applying Robot Programming by Demonstration to a real in-
dustrial case. In particular, two main use cases will be introduced: (i) the
automatic assembly of a car door with its module, and (ii) boost the produc-
tion of electric motor coils, by automatizing the copper winding procedure.
These cases were part of a European challenge aiming to encourage collab-
oration between academic and industrial counterparts [13]. This challenge
aims to boost the collaboration between research and industrial partners, in
order to achieve innovative results. The remaining of the chapter is struc-
tured as follow. Sec. 2 presents the general probabilistic approach and the
mathematical formulation of the learning framework. The first case study
regarding the automatic assembly of a car door with its module is described
in Sec. 3. While, Sec. 4 enters into details of the second case study in which
we robotized the manufacturing process for winding coils for stator or rotor
cores in electric motors. Finally, in Sec. 5, we summarize the work and the
achieved results.

2. Probabilistic framework

The learning framework proposed in this work aims at estimating the con-
trol model of a robotic device (output data) starting from human informa-
tion (input data) to create flexible probabilistic approach for reconfigurable
interactive manufacturing. Data undergo into a preprocessing phase in order
to remove artifacts and noise from the signals. After preprocessing two main
phases can be recognized, i.e. an offline and an online elaboration. During
the offline phase, data are collected from many subjects while performing a
certain task. In this phase, the information available for each trial should
contain both input and output data. A probabilistic model is trained in or-
der to represent the processed information with a limited set of parameters.
The online phase considers data directly acquired from the environment, ex-
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ploiting the model previously computed to estimate the corresponding robot
motion. In the following, all the concepts introduced so far will be accurately
described.

2.1. Signal processing

Selecting an extremely sophisticated machine learning technique does not
guarantee high accuracy in data estimation. The aim of the preprocessing
procedure is to obtain a set of significant features to estimate or in some
cases predict robustly and online the movement performed by a subject. In
fact, the process of filtering the significant information from input signals can
affect the actual success of the entire framework. The preprocessing phase is
essential to obtain a well-balanced combination of similarity and variability
within the signal. On one hand, if the considered signals have nothing in
common, the final model would not work properly. On the other hand, a
certain amount of variability should be integrated in the system, in order to
build a general model which can work with new, unseen data.

2.1.1. Smoothing and Normalization

Depending on the specific case study, the information collected can un-
dergo to different kind of preprocessing. Although, it is very likely that data
in input are very jagged and not good enough to be used to build good prob-
abilistic models, since the great variability of the signal results in poor model
performances. Therefore, a simple procedure to be applied to signals with
the aim of obtaining better and more robust models consists of a combination
of smoothing and normalization.

The smoothing function is based on a moving average filter. At the instant
t, the average of S data points available within the windows is computed in
order to smooth the data. This process is equivalent to lowpass filtering,
with the response of the smoothing given by Eq. 1

γS(t) =
1

S + 1

S∑
s=1

γ(t− s) (1)

The smoothing function performs a local regression using weighted linear
least squares and a second degree polynomial model.

Differences in the amplitude and in the mean of the signal requires the
application of a normalization technique. The normalization process ensures
the regularization of the signal in order to obtain a more robust model. The
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normalization has been implemented in two different manners for training
and testing phases. Since the training phase is executed offline, the nor-
malization has been accomplished by using the relative maximum within
the specific trial involved in the process. Instead, during the online testing
procedure the information about the relative maximum is not available.,We
needed to use a different method to be able to compute the normalization on-
line. For obtaining this result, the mean of the relative maximums collected
during the entire training set has been used as normalization factor.

2.2. Gaussian Mixture Model

Gaussian Mixture Model is a parametric probabilistic model that assumes
all data points are generated from a mixture of a finite number of Gaus-
sian distributions. These distributions completely characterize the model,
therefore it is composed by a weighted sum of Gaussian components. In
particular, three parameters for each Gaussian component are sufficient to
represent the whole information: mean, covariance and weight. These pa-
rameters are estimated from training data using the iterative Expectation
Maximization (EM) [14] algorithm. EM is a statistical algorithm that itera-
tively finds locally maximum likelihood parameters of a probabilistic model
when equations can not be solved directly. The locally maximum likelihood
is obtained repeating cyclically two phases.
Expectation (E) step creates a function for the expectation of the log-
likelihood evaluated using the following estimate of the components param-
eters:

pk,j(t+ 1) =
πk(t)N (ζj;µk(t),Σk(t))∑K
i=1 πi(t)N (ζj;µi(t),Σi(t))

(2)

Maximization (M) computes parameters maximizing the expected log-
likelihood found during last E step:

πk(t+ 1) =
1

N

N∑
i=1

pk,j(t+ 1) (3)

µk(t+ 1) =

∑N
i=1 pk,j(t+ 1)ξj∑N
i=1 pk,j(t+ 1)

Σk(t+ 1) =

∑N
i=1 pk,j(t+ 1)(ζj − µk(t+ 1))(ζj − µk(t+ 1))>∑N

i=1 pk,j(t+ 1)
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Figure 1: Example of the EM algorithm. The red and yellow ovals show how the algorithm
adapt the parameters to fit the data (the red and yellow crosses)

The result is a continuously improving adaptation to the best representation
of the input data as it is shown in Fig. 1. The EM loop stops when the incre-
ment of the log-likelihood L =

∑N
j=1 log (p (ζj|θ)) at each iteration becomes

smaller than a defined threshold ε, i.e. L(t+1)
L(t)

< ε.
A possible limitation in the learning process is the fact that EM requires

a priori specification of the number of Gaussian components K. Selecting
the correct K is a crucial task. On one hand, an overestimation of this
parameter might lead to over-fitting and, consequently, to a poor generaliza-
tion. On the other hand, an underestimation will result to poor predicting
performances. Several entropy based model selection techniques has been
proposed in literature to estimate this parameter (e.g. Bayesian Information
Criterion (BIC) [15], Akaike Information Criterion (AIC) [16], Minimum De-
scription Length (MDL) [17], and Minimum Message Length (MML) [18]).
In our work, we choose a standard approach based on BIC (Eq. 4).

SBIC = −2L+ np logN (4)

with L =
∑N

j=1 log (p (ζj|θ)), the log-likelihood for the considered model θ;

np = (K − 1) +K(D + 1
2
D(D + 1)), the number of free parameters required

for a mixture of K components with full covariance matrix. Considering
(a) H, number of subjects involved in the study; (b) n, number of trials per
subject used to train the system, (c) T , number of repetitions of each trial,
(d) N = nT (H − 1), total number of data samples. The number of subjects
is decreased by one, since the model is trained on H − 1 subjects and then
tested on the excluded subject h. Then a single data ζj, 1 ≤ j ≤ N in input
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at the framework can be written like in Eq. 5.

ζj = {ξ(t), α(t)} ∈ RD

ξ(t) = {ξc(t)}Cc=1,

α(t) = {αg(t)}Gg=1.

(5)

where C = |ξ|, number of channels considered; ξ(t) ∈ RC , the set of values
assumed from all the considered channels at the time instant t, with ξc(t) ∈ R,
the value assumed from the cth channel at the time instant t; G = |α|,
number of joint bending angles; α(t) ∈ RG, the set of values assumed from
the considered joint bending angles at the time instant t, with αg(t) ∈ R,
the value assumed from gth joint bending angle at the time instant t; and
D = C+G, the dimensionality of the problem. The final resulting probability
density function is computed as:

p (ζj) =
K∑
k=1

πkN (ζj;µk,Σk) (6)

with πk priors probabilities; N (ζj;µk,Σk) Gaussian distribution; µk mean
vector of the k-th distribution; Σk covariance matrix of the k-th distribution,
K number of Gaussian components.

2.3. Incremental Gaussian Mixture Model

The construction of the probabilistic model is a time consuming task.
Furthermore, often we are not interested in the building of a new model
from scratch. On the contrary, in some cases we want to update the model,
adding the information from new demonstrations, in order to make the model
fit better on a specific task, without losing the knowledge, the robustness
and the generality acquired from previous examples. For these reasons, we
implemented an incremental version of Gaussian Mixture Model (GMM),
namely Incremental Gaussian Mixture Model (IGMM), able to update the
model as new demonstrations are received from operators. We implemented
and tested the Generative method described in [19].

The first step consists of building a GMM with the classic EM algorithm
as described in Sec. 2.2. When new data are available ξi, they undergo the
following passages:

1. Synthetic data are stochastically generated with by performing a re-
gression on the current GMM. The generated data are a compact
representation of the previous data distribution.
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2. A new GMM is computed on the whole set composed by new data ξi
and the stochastically generated ones.

3. A learning rate α ∈ [0, 1] is introduced to modulate the contribution

from the new data and the stochastically generated ones. α = Ñ
Ñ+N

,

with Ñ number of new datapoints available, and N number of data-
points from previous demonstrations.

4. Given n = n1 + n2 number of samples for the iterative learning pro-
cedure, with n1 ∈ N number of trials from the new observations, and
n2 ∈ N number of trials generated from the previous model. The new
training set is then defined by:
ξi,j = ξ̃j, if 1 < i 6 ni
ξi,j = N(µ̂j, Σ̂j), if ni < i 6 n
∀j ∈ {1, ..., T}, with T number of timestamps, with n1 = [nα] ([.]
nearest integer function).

5. The training set of n trials is used to refine the model by updating the
current set of parameters (πk, µk, Σk) by using the EM algorithm.

2.4. Gaussian Mixture Regression

The regression rpocess has the goal of continuously estimating the robot
joints bending angles. The Gaussian Mixture Regression (GMR) provides a
smooth generalized version of the signal starting from the GMM. GMR es-
timates the joints angles α̂ and their covariance from the Electromyography
(EMG) ξ (and eventually accelerometers ϕ) signals known a priori, respec-
tively using Eq. 7 and Eq. 8.

α̂ = E [α |ξ, ϕ ] =
K∑
k=1

βkα̂k (7)

Σ̂s = Cov [α |ξ, ϕ ] =
K∑
k=1

βk
2Σ̂α,k (8)

with βk =
πkN(ξ,ϕ|µp,k,Σp,k )∑K
j=1N (ξ,ϕ|µp,j ,Σp,j )

, the weight of the kth Gaussian component

through the mixture; α̂k = E [αk |ξ, ϕ ] = µα,k + Σαp,kΣ
−1
p,k{{ξ, ϕ} − µp,k}, the

conditional expectation of αk given {ξ, ϕ}; Σ̂α,k = Cov [αk |ξ, ϕ ] = Σα,k +
Σαp,k (Σp,k)

−1 Σpα,k, the conditional covariance of αk given {ξ, ϕ}.
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Figure 2: GMR estimation and variance (blue) VS actual motion.

Assuming that the parameters (πk, µk, Σk) defining the kth Gaussian com-
ponent are decomposed as follows:

µk = {µp,k µα,k} Σk =

[
Σp,k Σpα,k

Σαp,k Σα,k

]
(9)

in which the mean and the covariance of the known a priori information
p = {ξ, ϕ} have been represented respectively with µp and Σp. Thus, the
model is completely defined by the Gaussian components composed solely
by weights, means and covariances obtained by means of the EM algorithm.
Subsequently, the information composing the model allows us to calculate a
generalized motion ζ̂ = {ξ, ϕ, α̂} (Fig. 2).

2.5. System effectiveness

Besides the specific metrics established for each case study, a measure
widely used for evaluating the goodness of the predicted measure [20] [21]
is the correlation coefficient ρα,α̂. This value is calculated between the pre-
dicted output α̂ and the real one α (Eq. 10), and it gives a measure of the
model performances by means of the statistical relationships between differ-
ent signals and different subjects. In particular, the correlation coefficient is
a measure of the degree of linear dependence between two variables, and it
is based on the covariance (Cov(α, α̂)) and the standard deviations (σα and
σα̂) of the considered variables. The resulting formula is reported in Eq. 10.

ρα,α̂ =
Cov(α, α̂)

σασα̂
(10)
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The correlation coefficient can assume all the values between 1 and -1, where
1 is total positive correlation and indicates a perfect direct linear relation-
ship (correlation), 0 is no correlation, and -1 is total negative correlation,
or a perfect decreasing linear relationship (anticorrelation). The closer the
coefficient is to either -1 or 1, the stronger is the correlation between the
variables, while the closer it is to zero, the weaker is the correlation. When
the correlation reaches zero the variables are independent.

Another common measure of the effectiveness of GMM-based systems is
Normalized Mean Square Error (NMSE). This function measures the good-
ness of fit between test and reference data. NMSE (Eq. 11) costs vary between
-∞ (bad fit) to 1 (perfect fit).

NMSE(t) = 1−
∥∥∥∥ α̂(t)− α(t)

α̂(t)− µt(α)

∥∥∥∥2

(11)

where t is the temporal instant from the beginning of the trial; α̂(t) is the
estimated output at the instant t; α(t) is the groundtruth at instant t; µt(α)
is the mean along the time of considered quantity. In this work, we used
both methods as an initial feedback for understanding if a model could work
or not in an actual test with the robot.

3. Automatic assembly

The main objective in this industrial case is to perform the automatically
assembly of a car door with its module. The evaluation of the developed
techniques has been carried out in a dedicated facility for Industry 4.0 in
Stuttgart with the constraints imposed by real industrial cases to guarantee
success and repeatability of the tasks to achieve in a quantifiable way. The
set of sensors available in the facility was predetermined without the possibil-
ity of adding new sensors or modifying the already existent ones. We had to
to work with a previously installed system as a part of a factory supply chain
partially obsolete and outdated. Industrial settings were composed of com-
plex and challenging workcell layouts with changing illumination and tight
workplaces. Moreover, it was a dynamic environment with people working
alongside robots in a collaborative manner and uncertain position of parts
to be assembled. Starting from the Robot Programming by Demonstration
paradigm, we designed a framework to learn novel robot trajectories and
configurations on the fly from human demonstrations.
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Such approach is quite novel in research, and still few attempts are avail-
able in the literature. As suggested by Chen et al [22], flexible assembly
applications are actually uncommon and only a small portion of industrial
robot are used to perform tasks with variability in the parts. In fact, con-
ventional industrial robots are not able to adapt to changes in the assembly
processes. On the other hand, Goya et al [23] indicated flexibility in the
automotive manufacturing as one of the more competitive weapons in the
economical analysis of North American automotive industry. They proposed
the possibility of switch easily and with a lower risk from a production line
to an other as main advantage in future achievements with respect to for-
eign competitors. The reduced risk should permit industries to invest in low
volume-high risk products, since the money and time loss would be minor
and the production line would remain the same.

While hardware and firmware composing the robotic system were fixed,
we had the possibility to use Robot Operating System (ROS) as program-
ming tool. ROS is now the standard de facto in research robotic frameworks,
but it has been only recently accepted as a tool for industry. The importance
of ROS has been expressed in [24] by Tavares et al. They analyzed a pick
and place task by combining several layers of control. Using ROS in devel-
oping industrial applications gives the possibility of efficiently divide layers
in standardized and compact blocks able to interact one with each other
to autonomously correct errors during the accomplishment of the task. In
our solution, we took advantage of the modularity and standardization ROS
characteristics to fuse together visual and robot learning techniques in order
to face the variability in the system configuration. Stability and reliability
of each method have to be enhanced to meet the requirements in terms of
elapsed time and hardware compatibility.

The human-robot interface has been designed to easily teach the system
with novel door assembly combinations by starting from previous works.
Vakanski et al [25] suggested to take advantage of robots ability of learning
from what surrounds them, transferring skills to a robot thanks to multiple
demonstration of the same skill under similar conditions. Vakanski’s idea was
to learn the robot trajectory by observing a subject moving a tool. Instead,
in our solution the person is actually moving the robot to acquire information
about the desired motion. The robot has to infer a generalized trajectory
obtained extracting relevant features from the demonstrations.
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Figure 3: a) Plastic module, b) Car door where the module has to be inserted.

3.1. Task and System Description

This paragraphs will introduce the setup of the cell and the objectives
to achieve for the correct automatic assembly of a car door with its module.
The module and the door are represented on Fig. 3. The positions of door
and module could vary of few centimeters in translation and few degrees in
rotation in each direction. The testbed is composed by three tasks:

1. Pick and insert door module: in the Pick phase we have to locate the
door module by using visual and force information, pick it up and reach
a reference position. Then the robot has to place the module into the
door, and come back to reference position without detaching it.

2. Screw door module: consists of detecting, picking up, inserting three
screws into three relevant holes to fix the module on the door.

3. Teach and assemble unknown door: the whole assembly has to work
for a novel pair of module and door.

The hardware available at the facility in Stuttgart consisted of a lightweight
collaborative robot (Universal Robots UR10) equipped with three sensors: a
3D sensor camera (PMD CamBoard Nano), a stereo camera (VRMagic D3),
and a 6D force-torque sensor (Robotiq FT150). A vacuum gripper, composed
by 6 suction cups, and a screwing tool (Weber Pluto 6D) were available and
they could be automatically attached or detached from the robot flange by
using a tool changing rack (Schunk SWS011). We replicated the setting in
our laboratory, using as a basis the same lightweight collaborative robot, the
Universal Robots UR10, but equipping it with different sensors. A PMD
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CamBoard Pico has been used as 3D camera, a pair of Philips SPZ5000 we-
bcams have been calibrated to work as stereo camera, while no force sensor
has been mounted on the robot. A vacuum gripper and a screwing tool
have been built by means of 3D printed materials to mimic the functional-
ity available in the original system. The tools could be manually changed
from one to another. A central working station connected through Gigabit
Ethernet collects data coming from sensors and going to controllers. ROS is
used as framework to enable interaction with the system. Topics, services,
and actions coming from the system, as well as device drivers, have been
established in advance to be able to use them in both settings. Positions
and orientations of every relevant frame are published and updated by using
the ROS TF package. A rough virtual model of the environment was also
available and objects were coherently placed in the scene depending on the
published positions. 2D and 3D cameras are provided with a default intrinsic
and extrinsic calibration.

3.2. Methodology

The proposed tasks are connected to 3 main constraints: (i) limited time
available for developing the solution, flexibility needed to deal with position
tolerances and unknown modules and doors, (iii) usability and reliability of
the teaching procedure. These characteristics lead us to propose a solution
able to face both known and unknown door assembly in a very similar man-
ner. In fact, different modules and doors rely on similar structures, and these
features can be used as input for the framework. We want to extract these
common characteristics to simplify and speed-up the new module and door
identification. In order to successfully solve the previously described tasks we
used the following pipeline: (a) learn the relative positions of each screw hole
in both module and door; (b) learn the gripping and inserting trajectories
through human demonstrations; (c) identify both module and door real po-
sitions by visual inspection; (d) pick and place of the module by transposing
the learned motion to real position; (e) identify screw positions, (f) screwing.

In the learning phase, we collect template images for each part to identify.
The idea is to extract relevant visual information in order to recognize them
during the part inspection in order to build a coarse virtual model of the
environment. A combination of Robot Learning from Kinesthetic Demon-
stration and Inverse Kinematics is used to learn how to pick and place the
module. The variability and robustness of the system are granted by collect-
ing several repetitions of the same action, performed by different subjects.
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A visual system is used also for finding the screws and pick them up and
fixing the module. A Template Matching approach is used for the screwing
operation. Again, a door inspection is performed looking for screw holes po-
sitions. Once a matching has been identified, the system will align the screw
with the hole by using the previously acquired template in order to perform
the insertion.

3.2.1. Learning Phase

The learning phase mainly involves how to correctly pick the module
and insert it in the door. These operations could be very easy or critical
depending on the context and on the complexity of parts to be assembled.
The module is composed by several elements including some flexible cables
possibly assuming different configurations while the task evolves. The gripper
provided for performing the picking action has a fixed base, while suction
cups attached on its extremities can slightly change in position. Positioning
the gripper in a consistent manner obtaining a robust layout is essential to
assure a safe pick. This operation has to be performed in advance, since
the surface of the module vary a lot and it is not always smooth. Moreover,
the module is quite heavy while the suction cups do not have great gripping
power in case of unbalanced loads. Selecting a wrong gripping position can
determinate a loss in vacuum system and the consequential module falling
due a displacement in weight or position of the suction cups. Once the module
is properly picked, it has to be placed into the door. A series of coupling pins
should be inserted into slots in the door to hold up the module, while avoiding
cables to obstruct the movement. The motion should be executed precisely
by placing the cables, and proceeding diagonally to insert the first coupling
pin. Finally, the module should be straighten, and the rest of the pins could
be set into place. Pinching the cable or failing to place a coupling pin lead
to incorrect insertion and consequential falling of the module. Obviously,
the placing trajectory is really dependent from the initial gripping position.
Therefore, a successful picking does not correspond necessarily to a good
performance in placing the module.

The described constraints could be easily met when the task is performed
by a human being. Indeed, people have the capabilities to understand the
task, test the selected strategy in few trials, and move the robot accord-
ingly to fulfill the objectives. Nevertheless, recording a single execution is
not enough for achieving a smooth generalized trajectory able to take into
account to the intrinsic variability in the tasks. In order to obtain such mo-
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Figure 4: The robot is physically guided to learn the motion through Kinesthetic Teaching.

tion, we used a Robot Learning by Demonstration paradigm able to build a
robust model of the movement starting from a series of demonstrations. In
particular, we recorded data directly from the robot while a subject is free
to physically guide the manipulator following the desired path (Fig. 4). In
this way, it is possible to let the robot learn a novel task in little time and
without the need of additional staff for robot programming.

In order to avoid unnecessary variability in the motion and reduce the
number of examples we decided to keep human demonstrations as short as
possible. Short trajectories are computed quicker resulting in a more stan-
dardized movement, while allowing a simpler and consequently safer robot
activity. We mixed together Probabilistic Robot Learning with Inverse Kine-
matics to take advantage from both of them. The robot reaches fixed and
safe positions close to the targets by using an Inverse Kinematics engine ob-
taining better performances in both reliability and time. The last part of
the movement, namely the most complex one, is performed by using inferred
trajectories computed through Robot Learning. Ten repetitions of the move-
ment performed by different subjects has been recorded from an arbitrary
selected initial position. The angles assumed by each joint while the robot
is manually controlled have been considered for building the probabilistic
model. Since door and module positions are not known a priori, a visual
feedback is used to compute the actual configuration of the system before
proceeding with the real picking and placing motions.

The raw data recorded from robot encoders have to be preprocessed in
order to be able to generate a good probabilistic model. As a first step, they
have been filtered to remove artifacts, such as periods in which all the joints
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Figure 5: Modelization of Joint1 with GMM and continuous estimation of Joint1 angle
retrieved with GMR.

were still. Doing so all the data not correlated with the movement have been
eliminated, maintaining exclusively motion information. This process leaded
to more robust and smooth trajectories while speeding up the creation of the
model. Once the model is built, the final motion is estimated thanks to a
regression technique.

Staring from GMM as accurately described in Sec. 2 and naming n the
number of repetitions of the task, and T the number of observations acquired
during each trial, the total number of data samples is N = nT . A single data
in input at the framework ζj, 1 ≤ j ≤ N is described in Eq. 12.

ζj = {t, α(t)} ∈ RD

αx(t) = {αg(t)}Gg=1.
(12)

with G, number of joint bending angles; αg(t) ∈ R, the value assumed from
gth joint bending angle at the time instant t; α(t) ∈ R, the set of values
assumed from the considered joint bending angles at the time instant t;
D = G + 1, the dimensionality of the problem. The resulting probability
density function is computed as shown in Eq. 6. The Gaussian Mixture
Regression (GMR) provided a smooth generalized version of every joint angle
starting from the GMM (Fig. 5). Every joint angle α̂ and its covariance are
estimated from the known a priori time instant t respectively using Equation
13 and 14.

α̂ = E [α |t ] =
K∑
k=1

βkα̂k (13)
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Σ̂s = Cov [α |t ] =
K∑
k=1

βk
2Σ̂α,k (14)

with βk, the weight of the kth Gaussian component through the mixture, α̂k,
the conditional expectation of αk given t, Σ̂α,k, the conditional covariance of
αk given t. The parameters (πk, µk, Σk) defining the kth Gaussian component
are decomposed as shown in Eq. 9. The described framework could be used
with known setting as well as with novel unknown door-module pairs. It
gives good results both in time needed to teach the tasks and in robustness in
reaching the goals. Nevertheless, it is hugely dependent from the information
provided by the visual counterpart system.

3.2.2. Module and Door Identification

As before, we tried to adopt the same base procedure for both known
and unknown objects. We decided to implement a reliable and adaptive
identification system working for both door and module. A stereo camera
has been used for obtaining a visual servoing procedure able to align the
robot with respect to an object. A simple Image-Based Visual Servoing
(IBVS) is really hard to implement due to lack of common robust set of visual
features to use. On other hand, a Position-Based Visual Servoing (PBVS)
approach supposes to know a priori a model of the object, not provided in
this challenge.

However, our algorithm compensates this lack with the 3D knowledge
coming from the stereo camera. The approach is composed by a training
phase and an iterative query phase. In the training phase, the robot is
placed into a known position wξcd, where both cameras could see the same
region of interest inside the object. A stereo pair template is acquired and a
keypoints extraction is performed by using FAST algorithm [26, 27] for the
detection and ORB [28] as descriptors. A sparse triangulation is computed
after a keypoints matching between left and right templates by using intrinsic
and extrinsic camera parameters. In this way, a model representing the
object is obtained from this set of 3D points. Finally, the object pose with
respect to the camera frame cdξo is estimated with a Virtual Visual Servoing
algorithm [29] based on the 3D information of the object.

In the query phase, we used a single-camera approach. For each iteration,
a template matching with the desired template has been performed in order to
identify a valid area where extracting keypoints on the current frame (Fig. 6).
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Figure 6: Keypoints extraction for the current frame with respect to the desired template.

Then, we matched current and corresponding keypoints by using the available
3D coordinates in the trained model in order to obtain the current camera
pose with respect to the object cξo. The displacement between the current
and the desired position could be easily computed as described in Eq. 15.

cξcd = cξo ∗ oξcd = cξo ∗ cdξ−1
o (15)

After the robot movement the effective displacement could be different due
to noise presence (Eq. 16).

˜cξcd = cξcd + ∆ξ (16)

The procedure has been iterated to satisfy the condition in Eq. 17.

∆ξ ≤ ∆ξmax (17)

where ∆ξmax is related to the desired accuracy. A simple template matching
in 2D has been used to find the screw and hole positions to perform the
screwing task.

3.3. Results

GMM has been used as probabilistic model to predict angles of G = 6
robot joints. Good results can be achieved with k = 10 Gaussian compo-
nents. Using few Gaussian components cause the generation of a too general
model, unable to handle the variability of the signal. Contrariwise, if k is big
the final model will be too complex. Experimentally, for module and door
identification, an average of 6 iterations were needed to reach a precision of
1mm for translation and 0.2deg for rotation. The training phase allowed us
to perform a PBVS task in an easy way, without any actual model of the
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Figure 7: The robot is able to insert the plastic module into the door, both in Stuttgart
and the laboratory facility.

object or a priori information. Therefore, the identification process for un-
known objects becomes quite simple and immediate. In fact, the operations
needed to perform the tasks have been restricted to (a) update the templates
collected for the stereo camera pairs, and (b) recompute cdξo through key-
points matching and triangulation. The query phase remained unchanged.
We were able to correctly pick and place the module and the framework is
robust to module shifts Fig. 7.

4. Manufacturing of electric motors

This task aims to increase the competitiveness in the European electric ve-
hicles and motors manufacturing. Automation is already applied at different
levels in this field, nevertheless it is facing strong competition from Countries
with low labor cost. The interest for electric motors has increased in the last
years to reduce the use of fossil fuels for environmental reasons, with the ideal
goal to eliminate non-renewable energy resources in few decades. Increasing
process efficiency would strengthen a very critical sector for Europe, as it
is expected to garner $22.32 billion by 2022, registering a CAGR of 3.7%
during the forecast period 2016-2022 [30].

Our aim is to reduce costs and increase flexibility with the following con-
tributions: (a) important reduction of setup time and costs of the winding
machine, thanks to the simplicity and flexibility of the proposed approach;
(b) increase in the quality of the final motors, thanks to the increased amount
of copper that the robot will be able to insert in each coil with respect to
manual winding; (c) possibility to parallelize the winding operations, dra-
matically increasing production rate; (d) decreased number of defected cores,
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Figure 8: The 3 phases approach adopted for this case study, with (i) the human interface
at the left, (ii) the lab scenario in the center, and (iii) the industrial scenario at the right.

thanks to an advanced quality inspection system; (e) reduction of environ-
mental impact of the production process, thanks to a reduction of wasted
copper wire.

An automatic system for coil winding has to be affordable to a wide range
of users: from small-medium enterprises (SMEs), producing small batches of
motors and frequently changing products design, to big companies, having
a market request of several thousand standard units. The low flexibility of
automated winding machines [31], i.e. the time and costs required to switch
from one design to another, coupled to their high cost (up to 100k Euros),
force small manufacturers (especially SMEs) to employ human operators in
this task. The handcrafted job is obviously much more flexible, but more
expensive (because of labor cost and equipment), and for the worker it is
distressing, frustrating and repetitive. Few attempts of robotic cell for coil
winding have been made [31]. We aim at achieving the product flexibility
required for this business sector by developing an interactive robotic cell
for this task. Such a reconfigurable cell has been provided with learning
capabilities. The cell is suitable for winding the coils of several kind of
electric machines, starting from the information of a simple teaching interface
that can be easily used by operators without specific skills in robotics. This
goal has been gradually reached passing through 3 main phases: (i) human
interface, (ii) lab scenario, (iii) industrial scenario (Fig. 8). The need of an
alternative power supply system for cars will be a crucial issue in the next
years. Up to now, important steps forward have been made in the electrical
motors. Factories like Tesla produce cars whose motors performances are
comparable with traditional motors ones. Here, the goal is the development
of an automatic tool, able to create autonomously an electric motor. Up to
now, there are industrial machines able to wind up coils. These machines are
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very expensive and they are not flexible.
The electric machines manufactures have to deal with uncertain sales

volumes. As follow, the batch sizes in the manufacturing process are vary-
ing. Furthermore, continuous efforts are taken by the industries R&D de-
partments to develop optimized electric machines with increased efficiency,
increased power density, decreased manufacturing cost, etc. This also leads
to currently uncertain motor designs for its manufacturing processes. In the
product lifetime its design may change several times. Also there is a trend
in the manufacturing industry to work with minimum or even zero stocks.
The products will be manufactured after receiving the orders. The devel-
opment of flexible production technologies that can be adapted to varying
motor constructions is an existing concern as long as manufacturing uncer-
tainties still exist. The process related to the coils manufacturing and theirs
transfer/insertion into the stator are addressed.

The concept of a flexible production will use a needle winding technique.
The production process is divided into coils manufacturing and insertion of
these on the stator. The coils are wound on frames, after which they are
mounted onto the stator. For this particular application the winding pro-
cess is restricted to concentrated windings. However, distributed windings
or even complex winding schemes are achievable by winding individual coils.
The proposed production process will have the potential to allow three di-
mensional shapes of the coils and complex winding schemes. Thanks to its
flexibility, the process can easily adapt to new developed motors, without the
need of expensive and time-consuming changing in the layout. Particularly,
the removal of auxiliary special wire guides implies a reduction of setup times
of the winding machine by 50%. The robotic-based system does not require
any machining of new fittings for every new production batch. This will lead
to an additional reduction of setup costs by 70%, mainly in terms of effort.

During the project, we faced the following challenges: (i) teach the robot
how to properly wind the coils of stator/rotors; (ii) robotize the manufac-
turing process of electric machines, in particular the winding of coils on
stator or rotor cores; (iii) detect and report non-compliances in the process
of the coil winding. The selected electric motors have the following features:
(a) frameless torque motors designed to be compact, high performance and
cost effective; (b) allow direct coupling with the payload, eliminating parts
of mechanical transmission; (c) maintenance free; (d) high energy NdFeB
magnets maximize torque density. Main applications for the proposed mo-
tors are electric vehicles, machine tools, laser scanning and printing, motion

23



simulators, rotary stage, robots, tracking systems.

4.1. Task and System Description

As anticipated, the case study has been divided in 3 phases.

4.1.1. Human-Robot interface

The first phase is focused on developing a solid learning system and a
reliable human-robot interface. Indeed, the objectives of this phase were
agreed in order to put the basis of the following ones. The approach will
be used during tests in lab and industrial scenarios to finally wind up the
stator coils of an electric machine. In this phase, the robot has to learn an
arbitrary path. The operator teaches the selected path moving a tool in a
natural manner to deploy the wire through a pin table, for a relatively low
number of demonstrations. The user guides the copper wire through the
pole grid by using a tool designed ad-hoc to maintain the wire constantly
stretched, and prevent the possibility of knotting. The system records the
covered trajectories by using a camera network composed by both 2D and
3D cameras. The camera network system has also the capability to monitor
the workspace by detecting and tracking humans for safety and collaboration
purposes. The idea is to have the robot to stop as soon as a human being is
detected in a danger zone around the machine by the cameras. In order to
demonstrate the consistency of the approach used, the system has to analyze
a trajectory decided by a person not knowing the system. To select a pole to
pass through, the operator has to roll up the wire twice around each choice.

4.1.2. Lab scenario

In the lab scenario (Fig. 9, the key robot action is the winding motion
around a fixed point as an initial step towards the final goal to wind the
coil of a real electric motor. Previous expertise in learning systems has been
exploited to teach the robot how to unroll a wire following a specific path in
order to pass a wire through a peg grid composing different possible routes,
as shown by the operator. A 6 DoF robot manipulator, equipped with the
same custom wire deployment system used by the human, has to replicate the
motion of the operator and unroll a wire along the path taught in the previous
phase. The result is considered correct if the robot is able to replicate the
pole sequence in the exact same order selected by the operator. Both the
operator and the robot starts from a fixed position. Moreover, the tool has to
maintain the tension of the wire, while allowing the user to detach the tool for
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Figure 9: System setup for the lab scenario.

demonstrating the task and to attach it back on the robot when finished. No
sensor is integrated in the end effector, since the only aim of the robot is to
copy the operator motion. As the robot deploys the wire, particular attention
has to been kept in order to prevent the wire from getting stuck or break.
To do so, it is important that the robot performs a human-like movement,
choosing a smart way for moving from one pole to another, avoiding useless
change of direction or turnabout. These observations have been considered
while developing the learning by demonstration framework since they are
fundamental in the following phase.

4.1.3. Industrial scenario

In the industrial scenario, the objective is to plan the path for winding a
coil to be mounted on a real stator composing an electric motor. The system
takes into account the coils dimensions (height, width, and depth), the num-
ber of turns in the coil, the wire thickness and allowed tension. The planning
is based on a learning framework previously developed in [11] [32] to improve
the system developed in the previous phase to compute the trajectory to be
covered by the robot tool and deeply explained in [33] and [34]. The learning
system has been trained with several examples generated by using an initial
set of human demonstrations, with the idea to improve the internal model
in an iterative manner and increase the performances of the whole winding
procedure. Of course, it is still possible to refine the computed trajectory by
teaching the robot a better route through human demonstration. The idea
is to enable the system to wind up a coil to be mounted on a stator never
seen before. The parameters of pole dimensions, number of turns in the coil,
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Figure 10: Sequence of automated winding procedure.

wire thickness and desired tension are provided as input to the robot by the
operator, without the need of specific sensors to identify them. Based on the
given information, the system chooses the proper coil from a coil hub and
the robot tool gripper picks and places it on the adjustable winding stage.
Later, the tool clamps its wire to the winding stage and starts winding the
coil. A set of basic quality inspection protocols, based on turns count, wire
tension and wire round distribution unity have been introduced, in order to
guarantee a high standard of the winding process. A tension sensor has been
integrated into the robot end effector in order to control the wire tension.
The output of the sensor has been used to close the loop in the controller, ad-
justing the joint trajectories to match the desired output. This feature allows
the robot to keep the wire tension as much as possible within the prescribed
range, in order to avoid picks in the tension and reach optimal performances
of the winded coil. Finally, the robot gripper picks the wound coil and places
it on the empty stator slot. The process is summarized in Fig. 10. The robot
working process has to be able to adapt to different sizes of poles and input
parameters to control the winding process. The system does not need human
intervention in wire handling, online quality control, pick and place. In fact,
the robotic platform has been provided with automatic wire clamping and
cutting, sensors for determining wire tension and wire rounds position, and
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Table 1: Specifications of the motors produced by the manufacturer during the project.

Params Unit M1 M2 M3 M4 M5

Ext. diam. mm 128 178 178 252 252
Inner diam. mm 80 120 120 160 160
Act. length mm 30 20 30 30 50
Rated power W 1600 2400 3100 3000 4500
Conn. torque N m 13 24 30 36 54
Peak torque N m 30 53 69 82 124
Rated speed rpm 1200 1000 1000 800 800
Noload speed rpm 1500 1350 1200 900 850
Inertia Kg m2 0.09 0.03 0.032 0.055 0.06
Weight Kg 3.7 5.65 6.65 8.5 10
Phase conn. Y Y Y Y Y
N. of poles 14 20 20 20 20

Figure 11: Stators and coils composing the motors used in the project.

a custom gripper for coil pick and place from the hub to the winding stage
and from winding stage to the stator.

We worked on five different types of electric motors in order to designed
and optimize a flexible production of the coil winding procedure. A stator
consists of a laminated steel core in whose slots is located a three phase star
connected winding. A rotor consists of a magnetic steel ring on which there
are placed high energy permanent magnets. Applications for the proposed
motors are electric vehicles, machine tools, laser scanning and printing, mo-
tion simulators, rotary stage, robots, tracking systems. The specifications
of the proposed outer rotor frameless motors are reported in Tab. 1, while
Fig. 11 shows some of the real components used in this scenario.

The system takes into account the coils dimensions (height, width, and
depth), the number of turns in the coil, the wire thickness and allowed ten-
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Figure 12: Human demonstration.

sion. These characteristics improve the system capabilities to compute the
trajectory to be covered by the robot tool. In fact, the considered features
are used to plan the path for winding a coil never seen before by the system.
Of course, it will still be possible to refine the computed trajectory by teach-
ing a better route through human demonstration. Novel demonstrations can
be acquired by the learning system to iteratively improve its internal model
and increase the performances of the whole winding procedure. The param-
eters of pole dimensions, number of turns in the coil, wire thickness and
desired tension are provided as input to the robot by the operator, without
the need of specific sensors to identify them. Based on the given informa-
tion, the system chooses the proper coil from the coils hub and the robot
tool gripper picks and places it on the adjustable winding stage. Later, the
tool clamps its wire to the winding stage and starts winding the coil. A set
of basic quality inspection protocols, based on turns count, wire tension and
wire round distribution unity have been introduced, in order to guarantee a
high standard of the winding process. A tension sensor has been integrated
into the robot end effector in order to control the wire tension. The output
of the sensor will be used to close the loop in the controller, adjusting the
joint trajectories to match the desired output. This feature allows the robot
to keep the wire tension as much as possible within the prescribed range, in
order to reach optimal performances of the winded coil. Finally, the robot
gripper picks the wound coil and places it on the empty stator slot.

4.2. Methodology

In our solution, we made Robot Learning and Inverse Kinematics work
together in order to accomplish a more general and robust solution. The
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Figure 13: Trajectory grid.

basic idea is to take advantage of the human capability to find a solution by
simply looking at the problems, while leaving to the robotic system to handle
mathematical computation. For example, it is very easy for people to find
the path to pass through a series of poles, while it is very difficult (or even
useless) for them to compute the robot joint positions to guide the robot
end effector along the same trajectory without interfering with the copper
wire. Therefore, the set of useful information extracted from the trajectories
performed by humans has been described by using a GMM [10], while a
GMR has been used for retrieving an unified smoothed trajectory for the
robot TCP. The learned trajectory has been translated from Task Space, in
the tracking system reference frame, into robot Joint Space by means of a
inverse kinematic engine.

During this work, we considered mainly three aspects in order to make
the robot correctly reproduce the operator actions. Two of them are strongly
related with the human-robot interface, the latter regards robot motion for
both lab and industrial scenarios. At first, we need to identify the objects in
scene and select the order of the operations. Second, we detected the best
entrance and exit position for wrapping the wire. Third, we have to make
the robot deploy correctly the wire.
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4.2.1. Poles selection

While the identification of the objects like coils and stators (industrial sce-
nario) has been performed following the same approach described in Sec. 3,
a different procedure has been developed for the detection of the poles se-
lected by the operator (lab scenario). A camera network has been used to
track people in the scene and compute information about the trajectory when
moving the wiring tool during demonstrations (Fig. 12). No special marker
or material has been placed on the person or on the tool. An automatic
tool has been developed to extract useful data from videos with almost no
human intervention. Starting from the trajectory extracted from the camera
network system, the goal is to detect which poles the operator selected and
in which order. The information has been transformed and projected on the
2D plane, so the input data is a sequence of (x, y) coordinates of the tool po-
sition (Fig. 13). The selected approach is based on the consensus algorithm.
The solution of the consensus problem is the result of the agreement among
a number of processes (or agents). The result we would like to achieve is
the pole selected by a person while deploying the wire. Basically, the con-
sensus problem requires agreement among a number of agents for a single
data value. Similarly, our poles selection algorithm seeks at which poles have
been visited and on which order. Some of the processes could be unreliable
since the visual system has estimated them wrongly, therefore our selection
algorithm should be able to confirm the information coming from a single
point of the trajectory by compering it with the others. In the same way,
consensus protocols verify candidate values, and agree on a single consensus
value.

In our consensus algorithm, adapted for this particular case, we start
dividing the grid in different areas belonging to the ”nearest” pole without
overlapping, so that every pole is in the center of a square. The idea is to
assign to each pole an afferent area homogeneously distributed. After the
grid division, we perform a sort of clustering operation, where each point
is substituted with the relative pole area. Once we count the number of
points belonging to each pole, a threshold helps in recognizing the selected
poles, without mistakenly choosing poles where the tools passes often without
selecting them. It is worth to notice that each pole can be visited only once
in a specific trajectory. Considering the visit order helps in correctly detect
the poles in the right order. A preprocessing phase is needed for remove
the still periods in which the tool is motionless in a fixed point. This case
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Figure 14: Pole selection algorithm.

could alter the outcome, since it would result like many consecutive samples
in the same pole area. The poles detection algorithm is described accurately
in Fig. 14.

4.2.2. Entrance and exit position estimation

In order to avoid breaks of the wire or tangles it is important that the
robot begin and end his winding motion in the correct , both for poles (lab
scenario) and coils (industrial scenario). The correct place depends mainly
on the previous position of the tool. For example, if the previously visited
pole is above on the left with respect to the currently selected pole, the tool
should come from left. Similarly, if the tool is placed on the right of a coil,
the approaching direction to start the winding will be also right. This step
is crucial to understand how to practically perform the winding. In order
to do so, we exploit the human knowledge and expertise. Usually, a person
is capable to understand which is the best way to reach a fixed point also
dealing with constraints. Accordingly, we can take advantage of the human
operator knowledge and overcome the planning limits.

Our goal is to compute the (x, y) coordinates of the start winding point
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and the end winding point. These coordinates are computed using a proba-
bilistic framework. We use the start and the end winding point coordinates
recorded from many winding tests performed by many different operators.
The human expertise and knowledge give us the best way to overcome this
critical issue in a probabilistic way. Furthermore, using many experiments
performed by different subjects brings generality into the system, since every
person could think to a different, although correct solution. The use of sev-
eral executions allows the achievement of a generalized solution, which takes
into account the intrinsic variability in the tasks. We obtained such results by
using a Robot Learning by Demonstration paradigm, able to build a robust
model of the coordinates starting from a limited number of demonstrations.
Another vantage of this solution is that it could be used also by unskilled
operators, since no further information or training phases are needed. The
interesting coordinates are selected from tool trajectory tracked during the
operator motion. GMM [10] Sec. 2 is used as probabilistic framework to
predict the (x, y) coordinates.

In order to build the probabilistic model we introduces two fictitious
positions in the system: pos -1 and pos +∞. The first one represents the
robots starting point, while the second one represents the final goal, both far
from the object to be winded. Considering data collected from S subjects,
each of them completed the task T times and for each task he perfomed
P different winding operations. The total number of data sample is N =
S ∗ T ∗ (P + 1). A single data in input at the framework ζj, 1 6 j 6 N is
described in Eq. 18.

ζj = {αw, αh, βw, βh, γx, γy, λx, λy} ∈ R8 (18)

with αw, αh respectively width and height of the previous position of the tool;
βw, βh respectively width and height of the object to be winded up; γx, γy
respectively x and y coordinates of the exit position; λx, λy respectively x
and y coordinates of the entrance position. The resulting probability density
function is computed as in Eq. 6.

The GMR provides smooth and generalized exit and entering points for
the considered poles starting from the GMM. Every exit and entering points
and their covariance are estimated from the known visited poles using Eq. 19
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and Eq. 20

{γ̂x, γ̂y, λ̂x, λ̂y} = E [{γx, γy, λx, λy}|{αw, αh, βw, βh}] =
K∑
k=1

ηk{γ̂x, γ̂y, λ̂x, λ̂y}

(19)

Σ̂s = Cov [{γx, γy, λx, λy}|{αw, αh, βw, βh}] =
K∑
k=1

ηkΣ̂{γ̂x,γ̂y ,λ̂x,λ̂y},k (20)

with ηk, the weight of the kth Gaussian component through the mixture;
{γ̂x, γ̂y, λ̂x, λ̂y}, the conditional expectation of {γx, γy, λx, λy} given {αw, αh, βw, βh};
Σ̂{γ̂x,γ̂y ,λ̂x,λ̂y},k, the conditional covariance of {γx, γy, λx, λy} given {αw, αh, βw, βh}.
The generalized form of the motions required only weights, means and co-
variances of the Gaussian components calculated through the EM algorithm.

4.2.3. Robot movement

Once we have obtained the entrance and exit coordinates to wind up
the selected objects, we have the complete information needed in order to
make the robot repeat the task by using inverse kinematics. We use Trac-
IK [35] as inverse kinematic motor. The planner is RTT connect [36] from the
OMPL library [37]. The planner includes an obstacle avoidance algorithm, in
order to avoid obstacles already modeled in the ssytem. We use MoveIt [38]
as interface for planning and visualization in a virtual environment. With
our solution, once completed the preprocessing phase everything is handled
autonomously from the robot inverse kinematics or Kinesthetic Teaching.

4.3. Results

Since the project is structured as a challenge, we needed to obtain the
best results in the shortest time in order to gain a good score.

4.3.1. Lab scenario

In the lab scenario, a person shows 5 arbitrary paths previously selected
from an external subject by moving the end effector in a 25 peg grid for a
maximum time of 1 minute. A set of metrics has been selected to compute
the performance of the system. Metric I measures the mean time needed to
compute the information provided by the camera network system after the
demonstration stops. Metric II measures the mean time needed to update
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Metric Description Achievement Worst case

Metric I Time needed to extract the demonstrated trajectory 56.24s 58.21s
Metric II Time needed to update the robot model 2.20s 2.21s
Metric III Number of additional demonstrations 0 0

Table 2: Final results for lab scenario.

the model. Learning frameworks are usually based on probabilistic models
built from a series of previous demonstrations called training set. An initial
training set of 40 examples has been used as a basis to compute the robot
trajectory. Anyway, it could not cover all possible paths, in those cases the
model needs to be updated. Moreover, the operator should be able to check
the validity of a novel demonstration as soon as possible. Metric III measures
the mean number of examples needed to learn a selected path in addition
to the initial demonstration. Targets for each metric have been selected by
looking at expectation of the industrial partner and taking into account the
state of the art in the field.

The time needed to compute the data recorded by the camera network
was in mean 56.24s. We are able to provide an updated model starting only
by the initial model and the data acquired during last demonstration in 2.20s.
Nevertheless, the initial model has been always sufficient in order to com-
pute the correct path during all the 5 different paths, resulting in 0 additional
demonstrations. The system guarantees high success rate, high responsive-
ness and low effort for humans. In fact, even in the worst cases, we over
performed the targets by obtaining 58.21s, 2.21s, and 0 additional demon-
strations respectively for Metric I, II, and III. The results are summarized
in Tab. 2.

4.3.2. Industrial scenario

The field-test was meant to prove the robot capability to work with dif-
ferent sizes and characteristics of the coils, and the correctness of both pick
and place tasks. Tests concentrated on the winding and pick and place of
the coils Fig. 15. A monitor shows wire tension during winding operations,
in order to identify in real time picks that could break the wire. The per-
formance have been tested in terms of productivity, repeatability, reduced
manufacturing costs, flexibility, and setup time. At the end of each winding
process, the coil has been compared with standards coming from actual in-
dustrial manufacturer by checking copper fill factor, inductances, resistances,
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Figure 15: A set of wound coils ready for testing and a coil mounted on the stator.

Table 3: Results obtained during the testing in the industrial scenario.

Metric Manufacturer Our system

Number of stator wound (8 hours) 7 15
Correct wound coils 90% 50%
Mean Copper fill factor 0.2 0.5
High voltage Pass Pass
Resistance Pass Pass
Repeatability 20% 100%

and conductance at high voltage. In particular, the copper fill factor is the
ratio of the copper conductors area over the total slot area. For a section of
coil, the copper fill factor is computed as CFF = nS

bh
, where n is the num-

ber of copper turns (conductors); S is the part of cross section composed by
copper conductor, b is the base of the cross section of a coil slot, h is the
height of the cross section of a coil slot. During the tests in Stuttgart, we
were able to reach a Copper Fill Factor of 0.5. For electric motors used in
standard applications, the copper fill factor is usually around 0.2. Moreover
we achieved a valuable advantage in terms of productivity and repeatability.
At the current state the production system in the manufacturer facility is
able to wind 7 stators in 8 hours. In ours case the robotic arm provides 15
completed stators every 8 hours. Finally, the repeatability has also increased
in a very significant manner due to the robotized approach. On the other
hand, we faced a major problem with an increased number of faulty products.
The results can be certainly improved with a more accurate tuning of the
overall system, but some parts of the framework should be revised in order
to avoid failures. A simple example regards the material used for the coils.
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It was too fragile for the robotized procedure and sometimes it broke while
winding the copper wire. The breaking problem could be avoided by 3D
printing with a different material in order to find a solid structure. Anyway,
it is worth to notice that the copper material (the most expensive one) used
for the spare parts can be recycled in the very same process, and it had not
been wasted.

Another very important aspect of our system is the high flexibility pro-
vided with respect to industrial winding machines available in the market.
The capability to switch between different types of motors with minimum cost
for additional tooling is essential. Commercial winding machines usually do
provide very limited flexibility with expensive additional tools requested to
wind different stators types. Moreover, the time needed for switching from
one tool to another is quite long taking from some hours to a day. With
our system, a complete change of the entire production from a motor type
to a different one require more or less 15 minutes, reducing drastically the
minimum number of pieces for a sustainable production, and opening the
market to small-medium enterprises with a low margin of investment.

5. Conclusions

In this chapter, we presented a Robot Learning framework able to acquire
information from the outer world and to generalize and understand it, ob-
taining in response a coherent robot motion. A robust preprocessing phase
has been developed in order to clean and smooth the signals from variabil-
ity due to noise or outliars. By removing artifacts, we have been able to
highlight the peculiar common characteristics of the specific motion along
several different trials. The refined signals have been used to train offline a
probabilistic model, namely a Gaussian Mixture Model (GMM), able to rep-
resent the signal as a weighted sum of Gaussian components. A regression
technique, namely Gaussian Mixture Regression (GMR), has been used to
continuously estimate the joint bending angles to control a robotic device.
We tested the proposed framework in two relevant industrial case studies:
(i) the automatic assembly of a car door with its module, and (ii) robotize
the manufacturing process of electric machines, in particular winding of coils
on stator or rotor cores. In both cases, the proposed system can keep the
costs low, while improving the production and the flexibility as part of the
Industry 4.0 paradigm.
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