
Human Motion Prediction Metrics:
from Time to Frequency

Michael Vanuzzo, Marco Casarin, Mattia Guidolin,
Stefano Michieletto, and Monica Reggiani

University of Padova,
Department of Management and Engineering (DTG),

Stradella S. Nicola, 3, 36100 Vicenza, Italy
{michael.vanuzzo, marco.casarin.4}@phd.unipd.it,

{mattia.guidolin, stefano.michieletto, monica.reggiani}@unipd.it

Abstract. Collaborative robotics has the potential to revolutionize in-
dustrial applications by integrating human and robot capabilities. How-
ever, for efficient and seamless collaboration, predicting human motion
is essential. This allows robots to dynamically adjust their behavior and
avoid potential collisions. Despite significant progress in this field in re-
cent years, there is still uncertainty surrounding the metrics needed for a
complete and accurate evaluation of algorithm performance. Currently,
the evaluation of Human Motion Prediction (HMP) techniques is based
on metrics focusing exclusively on geometric aspects. This work proposes
a HMP metric to evaluate the realism and naturalness of predicted hu-
man motion sequences based on their frequency spectra. Using the Hu-
man 3.6M dataset, several experiments were conducted to demonstrate
the effectiveness of the proposed metric. The results showed the ability
of this metric to capture insights related to the realism of the predicted
motion sequences, making it a valuable complementary tool alongside
existing metrics for evaluating HMP algorithms.
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1 Introduction

Collaborative robotics focuses on combining the precision and repeatability of
robots with the adaptability and problem-solving skills of humans. This is partic-
ularly effective in industrial settings, where robots can provide valuable support
to human operators in dangerous and physically demanding tasks. To achieve
seamless Human-Robot Collaboration, these systems need to accurately antic-
ipate human movements and dynamically self-adapt based on the operator’s
behavior. Several Human Motion Prediction (HMP) algorithms have been pro-
posed in the literature based on modeling the human body through a skeletal
representation [4–6,8].

The current metrics used for evaluating human movements only analyze ge-
ometric aspects of the predicted movements. However, these metrics fail to con-
sider the realism of the movements being predicted as they focus only on the rota-
tion angles or 3D position of the body skeleton. It has been observed [2] that the
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frequency spectra of motion sequences are strongly correlated with the realism
of human movements. In this work, we propose a novel metric for HMP based on
the analysis of the motion frequency spectra of the predicted human movements.
The effectiveness of the proposed metric has been addressed through several
experiments conducted using the Human 3.6M (H36M) dataset [3], comparing
three state-of-the-art HMP models [4,5,8], as well as the Zero-Velocity (ZeroVel)
baseline [6].

2 Methodology

This section describes the metrics commonly used for HMP and proposes a novel
metric based on the frequency spectrum of the motion sequences. In the context
of HMP, a sequence is a time series of human poses, each defined by a set of
features that fully describe the skeleton’s configuration.

2.1 Geometric Accuracy Metrics

These metrics aim to measure the difference between each predicted frame and
the ground truth within the K sequences of the test set, each spanning T frames.

Mean Angle Error (MAE) The MAE, also known as Euler Error, represents
the standard metric to evaluate HMP algorithms [1, 4–6], and its definition is:

MAE =
1

K · T

K∑
k=1

T∑
t=1

∥x̂k,t − xk,t∥2 (1)

Here, x̂k,t and xk,t denote the predicted pose and the ground truth,respectively,
for frame t in sequence k. Each pose xk,t is represented by a vector containing
3 · J elements, corresponding to the 3 Euler angles that describe the relative
rotation of each of the J joints with respect to its parent joint.

Mean Per Joint Position Error (MPJPE) The MPJPE is a widely used
metric for both pose estimation and prediction [5, 7]. It inherently considers
both the distance between joints, i.e., the length of the links defined in the
skeleton, and the accumulation of errors along the kinematic chain. This metric
is mathematically defined as follows:

MPJPE =
1

K · T · J

K∑
k=1

T∑
t=1

J∑
j=1

∥p̂k,t,j − pk,t,j∥2 (2)

Here, p̂k,t,j and pk,t,j represent the predicted 3D position of joint j and its
corresponding ground truth for frame t in sequence k.
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2.2 Frequency Spectrum Similarity Metric

When evaluating a HMP algorithm, it is crucial to consider the realism of the
generated sequences. However, a prediction yielding high accuracy in geometric
metrics may fail to account for unnatural movements that present sharp discon-
tinuities. Therefore, this study focuses on evaluating the realism of the generated
motion sequences based on the analysis of their frequency spectrum.

Given a motion sequence pk(t) described by joint positions over time, its
power spectral density Pk,norm(f), normalised across all joints, can be computed
using the Fourier transform. Then, different power spectral densities can be
compared using the Wasserstein Distance (WD), a distance function that can be
used between probability distributions. The proposed Power Spectral Densities
Similarity (PSDS) metric, defined as the WD of order 1, can be computed as
follows:

PSDS (Pk1,norm(f), Pk2,norm(f)) =

∫
|Fk1

(x)− Fk2
(x)|dx (3)

Here, Fki
(x) is the cumulative distribution function of Pk,norm(f), similar to a

probability distribution describing the probability that human joint movements
will excite specific frequencies. A higher value is achieved when the power dis-
tribution shifts towards either low or high frequencies, a behavior in contrast to
typical human movement.

3 Experiments and Results

To assess the effectiveness of the proposed PSDS metric, we conducted multiple
experiments evaluating different HMP algorithms on the metrics described in
section 2. The study was based on the H36M dataset [3] and on three state-of-
the-art Deep Learning (DL) models: History Repeats Itself (HRI) [5], Dynamic
Multiscale Graph Neural Networks (DMGNN) [4], and Position-Velocity Recur-
rent Encoder-Decoder (PVRED) [8]. HRI employs an attention mechanism to
identify similarities in past and current action sequences. DMGNN implements
Graph Convolutional Network to discern relationships among skeleton joints
at various abstraction levels. PVRED is based on a Recurrent Neural Network
with Gated Recurrent Units to capture temporal relationships by considering
both positional and velocity information. Additionally, the results include scores
from the ZeroVel model proposed in [6], in which all the prediction frames are
identical to the last input frame. Despite its simplicity, this model is commonly
used as a valuable baseline. Notably, many algorithms performed worse than this
model [6]. This highlights the challenges of accurately predicting future human
poses, but also emphasizes the limits of current evaluation metrics.

Fig. 1 presents the results of the three algorithms in terms of MAE and
MPJPE metrics. All models perform better than the ZeroVel baseline, with the
HRI model showing superior accuracy. However, it is important to note that the
improvement relative to the ZeroVel model is not very pronounced.
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Fig. 1. MAE and MPJPE values during the first second of anticipation for the three
models and the baseline, represented by the ZeroVel model.

Alongside the previous results, the outcomes obtained with the proposed
novel metric are presented. Each point in Fig. 2 shows the PSDS metric computed
on a 1 s sliding window, thus achieving a frequency resolution of 1Hz. Values are
reported in logarithmic scale over a 30 s span.

The results show how the three models outperform the ZeroVel model, high-
lighting a greater capability of generating natural movements. Furthermore, it is
observable that the HRI model, despite providing the best accuracy with MAE
and MPJPE, turns out to be the least effective in generating movements with
frequencies that resemble natural human motion. The ZeroVel model, generat-
ing a constant pose throughout the prediction timeframe, leads to high PSDS
values as the only spectral component generated is at 0Hz. Therefore, this re-
sult highlights that ZeroVel predictions are highly implausible. Furthermore, the
effectiveness of the PSDS metric is confirmed by the train-test value, which is
computed using motion sequences from the test set. Given that the latter consists
of real human motion recordings, the train-test represents the lowest achievable
error.

Fig. 2. PSDS values during 30 s of anticipation for the three models, the baseline
(ZeroVel model), and the lowest achievable error (train-test).
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4 Conclusions

This paper presents PSDS, a novel metric that emphasizes the significance of
frequency analysis in determining the quality of generated movement sequences.
While commonly used metrics focus on assessing geometric accuracy, PSDS
uniquely evaluates the realism of predicted movements. Consequently, it intro-
duces key information complementary to the existing metrics, providing essen-
tial insights for developing innovative prediction algorithms. This is particularly
crucial in Human-Robot Collaboration field, where predictions must be geomet-
rically accurate and also ensure realism and naturalness. By introducing a novel
metric that evaluates these aspects, this paper contributes to a more compre-
hensive evaluation framework, paving the way for the development of enhanced
predictive models.
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